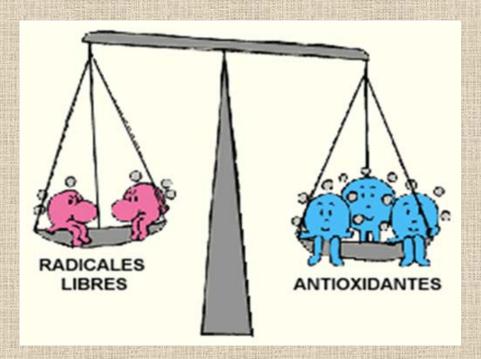
Redox Homeostasis and Radical Detoxification Systems in Mycobacterium tuberculosis

Ye Yu
Supervised by Prof. GP Zhao
Dec. 15 2015
Department of Microbiology


Outline

- Redox Homeostasis & Mtb
- Oxidative Stress in Mtb lifecycle
 - I. ROS
 - II. RNS
- Redox Homeostasis in Mtb
 - I. redox couples (buffer)
 - II. enzymes
- Redox sensing in Mtb
 - I. stringent response
 - II. DosR regulation system
 - III. WhiB proteins as sensor
- Summary

Part I. Redox Homeostasis & Mycobacterium tuberculosis

Redox Homeostasis

- The balance of oxidative and reductive capacity within a biological system such as a single cell, organ, or organism
- The reactive species will produce in all aerobic respiration
- Oxidative stress: Reactive oxygen species(ROS) e.g. O2°-, HO2°, HO° and RO°; Reactive oxygen species; Reactive nitrogen species (RNS) e.g. NO°, NO2° and NO3°
- Antioxidant defense: Enzymatic; Nonenzymatic

Extra difficulty for *Mtb* Redox Homeostasis

- As a pathogen, need to evade most immune stress from host cell
- ROS/RNS is most significant immune stress in macrophage
- Redox imbalance might also affect antimycobacterial drug efficacy. For example, INH or ethionamide

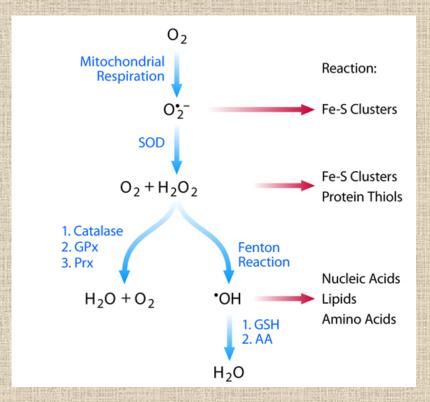
A typical infection of Mtb

"captured→survive in macrophage (→ enter dormancy →

→ resuscitation) → active infection"

Standard redox potential of normal redox stress species

- Radical species damage microbial DNA, lipids, and proteins, as well as other susceptible cellular constituents.
- The higher of Redox potential, the higher ability to make damage

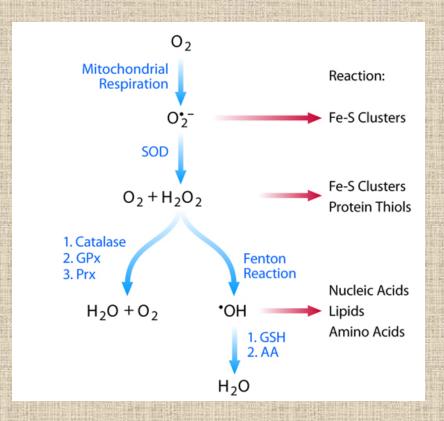

Table 1. Standard reduction potentials of biologically relevant redox couples

100	Redox couple	Redox potential (mV)	
T.	CO ₂ /CO ₂ ⁻	-1800	Highly reducing
100	CO ₂ /CO	-520	•
	Acetyl-Co/Apyruvate	-500	
	Succinyl-CoA/2-oxoglutarate	-491	
	CO ₂ /HCOO ⁻	-421	
	H^+/H_2	-414	
	NAD+/NADH	-316	
Š	NADP+/NADPH	-315	
	CO ₂ /acetate	-291	
	TrxC [TrxSS/Trx(SH ₂)]	-269	
8	TrxB [TrxSS/Trx(SH ₂)]	-262	
	TrxA [TrxSS/Trx(SH ₂)]	-248	
16	2H ⁺ /2Cys-SH (cystine)	-230	
	FAD+/FADH ₂	-219	
	FMN ⁺ /FMNH ₂	-219	
	Pyruvate, H ⁺ /lactate	-183	
	Oxaloacetate, 2H ⁺ /malate	-166	
	Menaquinone	-74	
	ESSE/2ESH (ergothioneine)	-60	
	CoQ/CoQ*-	-36	
	Fumarate/succinate	+32	
	Ubiquinone/ubiquinol	+45	
	Fe^{3+}/Fe^{2+} (aq)	+110	
	Ascorbate*-/ascorbate-	+282	
	O_2/H_2O_2	+295	
	Cytochrome a_3 (Fe ³⁺)/cytochrome a_3 (Fe ²⁺)	+350	
	NO_3^-/NO_2^-	+421	
	α-Tocopheroxyl*/α-tocopherol	+500	
	O ₂ /H ₂ O	+818	
	RS*/RS (cysteine)	+920	
	GS*/GS ⁻ (glutathione)	+920	
B	NO ₂ /NO ₂	+990	
200	ROO*, H*/ROOH (alkyl peroxyl radical)	+1000	
58	HO ₂ , H ⁺ /H ₂ O ₂	+1060	
1	ONOO-/NO2 (aq)	+1400	
TE.	RO*, H*/ROH (aliphatic alkoxyl radical)	+1600	
100	NO ₂ /NO ₂	+1600	
25	CO ₃ ⁻ , H ⁺ /HCO ₃ ⁻	+1780	V Liberty avidinian
B	HO*, H*/H ₂ O	+2310	Highly oxidizing

Part II. Redox Stress in *Mtb* lifecycle

Endogenous ROS stress

- reduction of O2 by various components of the electron transport chain under normal aerobic conditions, resulting in the production of ROS as superoxide radicals (O2*-).
- O2*- also oxidises the 4Fe-4S clusters of enzymes, such as dehydratases, leading to enzyme inactivation and release of Fe2+.


Endogenous ROS stress

 The O2*- also turns into H2O2 by Superoxide dismutase (SOD)

$$O_2^{\bullet -} + O_2^{\bullet -} + 2H^+ \rightarrow H_2O_2 + O_2$$

 The released Fe2+ can then reduce H2O2 to intracellular HO^o (much higher reactive) (Fenton reaction)

$$Fe^{2+} + H_2O_2 \rightarrow Fe^{3+} + HO^{\bullet} + HO^{-}$$

ROS stress from immune system

- On phagocytosis of Mtb, lung macrophages and neutrophils produce large quantities of ROS and RNS.
- NADPH oxidase in host cell catalyses the O2 using NADPH as electron donor, generating O2

 , as depicted in the following

$$2O_2 + NADPH \rightarrow O_2^{\bullet -} + NADP^+ + H^+$$

 Besides, hypochlorite ion (CIO-) could be generated by myeloperoxidase; CIO- is an extremely reactive oxidant and can lead to oxidative damage of lipids, proteins and DNA

$$Cl^- + H_2O_2 \rightarrow ClO^- + H_2O$$

RNS stress from immune system

 In response to mycobacterial infection, another major antimicrobial pathway that acts through inducible NO synthase is activated

$$L-arginine+NADPH+H^++O_2 \rightarrow L-citrulline$$

+ $NADP^++H_2O+NO^{\bullet}$ (10)

 Than NO• react with O2•- to produce highly reactive OONO-, than leads to the generation of NO-,•NO2, NO2-, N2O3, N2O4. wihch are all effective in killing Mtb

Hypoxia Stress in granuloma

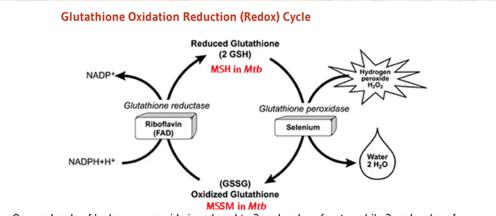
Before granuloma formed

- Immune response (mononuclear cells and T lymphocytes)
- Low pH
- Oxidative stress

After granuloma matured (solid granuloma)

- Hypoxia
- Low nutrition (foamy macrophage contains rich fatty acid in granuloma center)

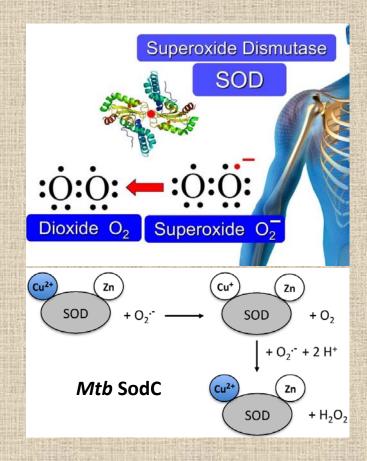
Part III. Redox Homeostasis in *Mtb*


Redox Homeostasis in Mtb

- similar to other bacterial species, Mtb has evolved pathways to monitor redox signals (such as O2, NO and CO) and the alterations in all mentioned intra- and extracellular redox stresses.
- There are two basic types of strategy to keep redox homeostasis in *Mtb: non-*enzymatic and enzymatic

Oxidation			
(Pro-Inflammatory)			
0-			
O ₂ -			
H_2O_2			
·OH			
ONOO ⁻			

Non-enzymatic: THIOLS as Redox Buffers

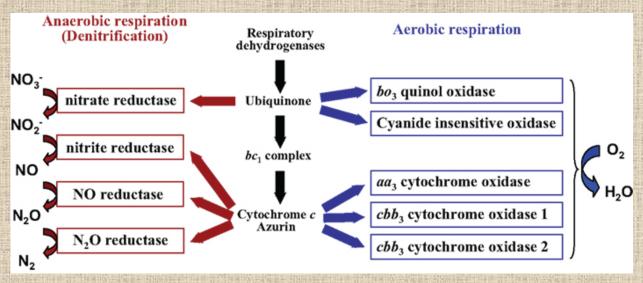

- Redox couples are present in all cells to keep the cytoplasm in a reduced, such as such as NAD+/NADH, NADP+/NADPH, FAD/FADH2
- The conventional redox couple glutathione (GSSG/2GSH) is absent in mycobacteria.
- Mycobacteria contain redox couples such as thioredoxin [TrxSS/Trx(SH)2], NADH/NAD+ and NADPH/NADP+, Rather, mycobacteria contain oxidised—reduced mycothiol (MSSM/ 2MSH) as the major redox buffer.

One molecule of hydrogen peroxide is reduced to 2 molecules of water while 2 molecules of glutathione (GSH) are oxidized in a reaction catalyzed by the selenoenzyme, glutathione peroxidase. Oxidized glutathione (GSSG) may be reduced by the flavin adenine dinucleotide (FAD) -dependent enzyme, glutathione reductase.

Enzymatic: Superoxide dismutases

- SODs produced by merely all cells to detoxify superoxide radicals. They catalyse the dismutation of O2●- into H2O2 and molecular oxygen.
- Mtb contains two SODs, an ironcontaining SOD called SodA and a Cu- and Zn-containing SOD called SodC.
- Its expression is enhanced by H2O2 exposure and on nutrient starvation, former study successfully showed that SodC protects Mtb against superoxide in vitro.

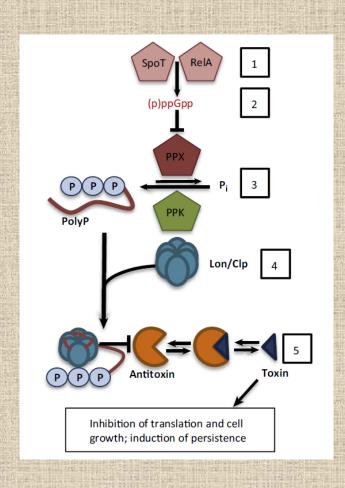
Enzymatic: Catalase peroxidase


- Catalase peroxidases (Kat) are enzyme systems used to detoxify H2O2 into H2O and O2.
- Mtb owns one catalase, KatG that shows catalase, peroxidase and peroxinitritase activity.
- KatG has been demonstrated to be a virulence factor (Ref. 110) that mediates resistance against the prodrug INH.

Enzymatic: Methionine sulfoxide Reductases

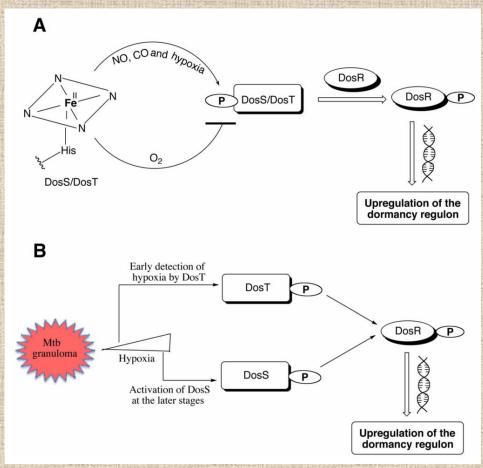
- MSRs use NADPH, Trx and TrxR as the system to reduce methionine sulfoxide to methion
- Mtb contain two MSRs, one active on both free and peptidyl methionine-(S)-sulfoxide, and one or more MSRs active on peptidyl, but not free, methionine-(R)-sulfoxide ine and to protect bacteria against ROS and RNS

Change of Respiratory chain


- Lack of terminal electron acceptors (O2)
- Nitrate becomes new main electron acceptors

- The respiratory chain is also changed, different from **Quinol & cytochrome** transferring the electron in aerobic situation, a series of **nitrogen reductase** form the new anaerobic electron transfer chain
- Nitrate is reduced by a nitrate reductase (narGHJ) and is then excreted by a nitrite extrusion protein (narK1, narK2, narK3)
- Alternate electron carriers in the hypoxic: fumarate reductase; probable NAD(P)H dehydrogenases; ferredoxin (These three parts were upregulated in transcription analysis)

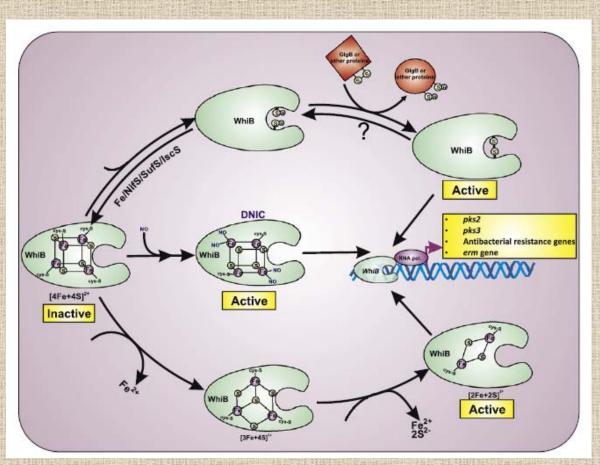
Part IV. Redox sensing in Mtb


Stringent response: response to hypoxia

- In Mtb, the ratio of amino-acylated tRNA to free tRNA was the first regulatory response to amino acid & carbon starvation by RelA
- ppGpp is maintained in the cytosol by RelA
- ppGpp inhibits polyphosphatase, result in the accumulating of PolyP.
 PolyP interacts with TA module, finally globally affect RNA polymerase, then down-regulate gene expression

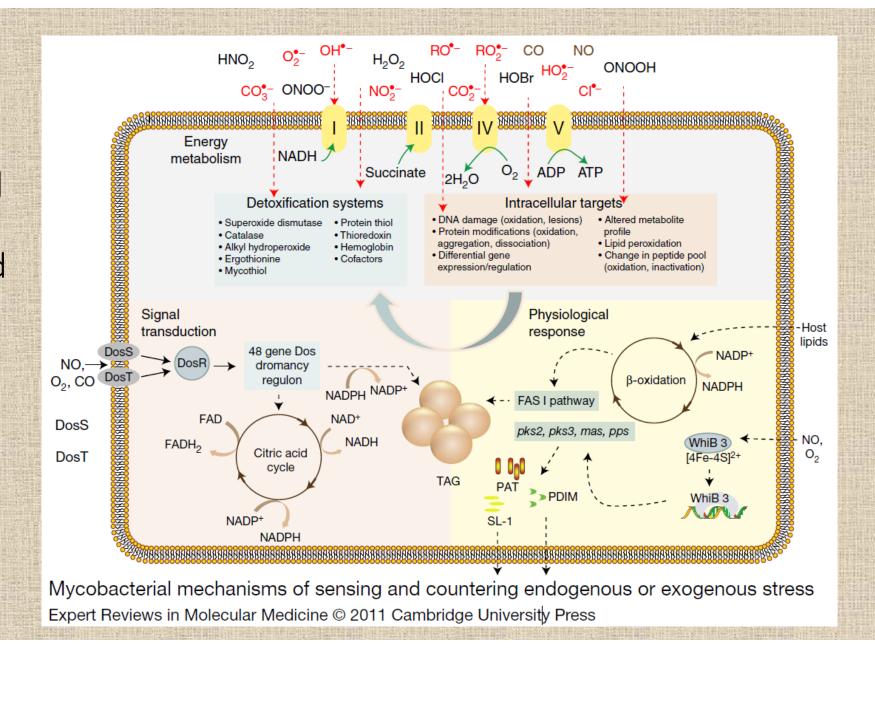
DosT/DosS/DosR three component sensor & regulon: response Oxidative stress

- DosT is a gas sensor, activated by absence of oxygen or the binding of nitric oxide and carbon monoxide. DosS is a redox state sensor
- Both DosT/DosS are Kinase to Phosphorylate DosR, resulting in downstream signaling
- Expression of DosR was induced by DosT/DosS two component sensor
- DosT & DosR activated in different time in hypoxia of granuloma


Rv No. Gene | NO | HYP | DOR | 11.1 HP 8.2 Transcriptional regulator 7.2 CHP 9 8.3 Ribonucleotide red.cl. II 1.0 CHP 5.0 6 1.9 2.0 1.8 3.3 8.1 Fused nitrate reductase 13 5 Nitrite extrusion protein 24 7.8 CHP-USPA motif 9.4 Cation transport ATPase 8.6 1.8 12 2003c 2004c 2.1 8.0 9.2 11.1 CHP-USPA motif 4.0 2.6 Trehalose phosphatase ▲ 2007c 24 18 2028c 17.3 CHP-USPA motif 2029c pfkB 12 23 Phosphofructokinase II 48 31 α-Crystallin 15 24 27.3 CHP-USPA motif ₹ 2623 2624c 5 CHP-USPA motif 2625c 5.3 57 2626c 15 5.2 23.1 HP 7.4 7.7 16.2 HP 6.2 23 2 21 28 40.4 CHP 4.6 9.8 12.7 14 12 2-comp. response reg. 3133c 12 CHP-USPA motif

DosR regulon

- Now 53 genes was found regulated by dosR. Including 4 transporters, 2 Nitrate respiratory chain, 2 regulator
- Nearly 60% of the genes do not have an annotated function, by sequence & domain comparison, 11 involved in carbohydrate and fatty acid metabolism; 8 in electron transfer


WhiB proteins as iron—sulfur cluster-based sensors

- WhiB3 is an oxygen and NO sensor
- WhiB binds a[4Fe-4S]2+ cluster, which exposure to oxygen or NO leads to activate to a [2Fe-2S]2+
- This changes in WhiB proteins that enhance the DNA-binding activity of WhiB3

Summary:

Mycobacterial mechanisms of sensing and countering Oxidative stress

Reference

- 1. Dennis J Murphy, James R Brown*. Identification of gene targets against dormant phase *Mycobacterium tuberculosis* infections. *BMC Infectious Diseases* (2007).
- 2. Calvin Boon & Thomas Dick*. How *Mycobacterium tuberculosis* goes to sleep: the dormancy survival regulator DosR a decade later. *Future Microbiol* (2012). 7(4), 513–518
- Martin Gengenbacher & Stefan H.E. Kaufmann. Mycobacterium tuberculosis: success through dormancy. FEMS Microbiol Rev 36 (2012) 514–532
- 4. Shiloh MU, Manzanillo P, Cox JS. *Mycobacterium tuberculosis* senses host-derived carbon monoxide during macrophage infection. *Cell Host Microbe* 3(5), 323–330 (2008).
- 5. Chao JD, Papavinasasundaram KG, Zheng X et al. Convergence of Ser/Thr and two-component signaling to coordinate expression of the dormancy regulon in *Mycobacterium tuberculosis*. *J. Biol. Chem.* 285(38), 29239–29246 (2010).
- 6. Leistikow RL, Morton RA, Bartek IL, Frimpong I, Wagner K, Voskuil MI. The *Mycobacterium tuberculosis* DosR regulon assists in metabolic homeostasis and enables rapid recovery from nonrespiring dormancy. *J. Bacteriol.* 192(6), 1662–1670 (2010).
- 7. Watanabe S, Zimmermann M, Goodwin MB, Sauer U, Barry CE 3rd, Boshoff HI. Fumarate reductase activity maintains an energized membrane in anaerobic *Mycobacterium tuberculosis*. *PLoS Pathog*. 7(10), E1002287 (2011).
- 8. Cole ST, Brosch R, Parkhill J *et al.* Deciphering the biology of *Mycobacterium tuberculosis* from the complete genome sequence. *Nature* 393(6685), 537–544 (1998).
- 9. Dasgupta N, Kapur V, Singh KK *et al.* Characterization of a two-component system, *devR*—*devS*, of *Mycobacterium tuberculosis*. *Tuber. Lung Dis.* 80(3), 141–159 (2000).
- 10. Kumar A, Deshane JS, Crossman DK *et al.* Heme oxygenase-1-derived carbon monoxide induces the *Mycobacterium tuberculosis* dormancy regulon. *J. Biol. Chem.* 283(26), 18032–18039 (2008).
- 11. Commandeur S, Lin MY, Van Meijgaarden KE et al. Double- and monofunctional CD4 and CD8 T-cell responses to Mycobacterium tuberculosis DosR antigens and peptides in long-term latently infected individuals. Eur. J. Immunol. 41(10), 2925–2936 (2011).
- 12. David R. Sherman and Gary K. Schoolnik *et al.* Inhibition of Respiration by Nitric Oxide Induces a *Mycobacterium tuberculosis* Dormancy Program. *J. Exp. Med.* (2003)
- 13. Santhosh Sivaramakrishnan and Paul R. Ortiz de Montellano. The DosS-DosT/DosR Mycobacterial Sensor System. *Biosensors* 2013, *3*, 259-282; doi:10.3390

Thank you!